
Preprint ANL/MCS-P5059-0114

A NEWTON-SCHULZ VARIANT FOR IMPROVING THE INITIAL
CONVERGENCE IN MATRIX SIGN COMPUTATION

JIE CHEN⇤ AND EDMOND CHOW†

Abstract. The Newton-Schulz iteration is a quadratically convergent, inversion-free method for
computing the sign function of a matrix. It is advantageous over other methods for high-performance
computing because it is rich in matrix-matrix multiplications. In this paper we propose a variant
that improves the initially slow convergence of the iteration for the Hermitian case. The main idea
is to design a fixed-point mapping with steeper derivatives at the origin in order to accelerate the
convergence of the eigenvalues with small magnitudes. In general, the number of iterations is reduced
by half compared with standard Newton-Schulz; and, with proper shifts, the number can be further
reduced. We demonstrate numerical calculations with matrices of size up to the order of 104–105 on
medium-sized computing clusters and also apply the algorithm to electronic-structure calculations.

Key words. Matrix sign function, Newton-Schulz iteration, electronic-structure calculation

AMS subject classifications. 65F60

1. Introduction. We are interested in numerically computing the matrix sign
function

S = sign(A)

for a matrix A 2 Cn⇥n with no eigenvalues lying on the imaginary axis. The scalar
sign function sign(z) takes value +1 when <(z) > 0 and �1 when <(z) < 0. Although
much of the existing theory and methods cover the general case where the eigenvalues
of A are complex, we focus our approach in this paper on the Hermitian case such that
the eigenvalues are all real. Hence, a simplified definition of the matrix sign function
for this case is

sign(A) = U · diag(sign(�1), . . . , sign(�n

)) · U⇤,

where U⇤AU = diag(�1, . . . ,�n

) is a diagonalization of A. The Hermitian case appears
in several real-life applications, such as lattice quantum chromodynamics [19, 24, 8]
and electronic-structure calculations [23, 21]. For the latter application, the exact
density matrix ⇢ of a molecular system with Fermi level µ is the Heaviside function
of µI �H, where H is an approximation to the Hamiltonian. Thus, one can compute
⇢ as 1

2 [sign(µI �H) + I]. More details of this application are given in Section 8.
Several numerical methods exist for computing sign(A). Here, we discuss the

methods for the general case and mention the special treatment of the Hermitian
case, if any. Whenever applicable, we discuss the potential for parallelization of a
method.

The Schur method [9, Section 5.2] is considered a direct method. The method
first computes a Schur decomposition A = QTQ⇤ and then applies the Parlett recur-
rence on T , yielding R = sign(T). Hence, sign(A) is formed as QRQ⇤. When A is

⇤Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439
(jiechen@mcs.anl.gov). Work supported by the U.S. Department of Energy under Contract DE-
AC02-06CH11357.

†School of Computational Science and Engineering, College of Computing, Georgia Institute of
Technology, Atlanta, GA 30332 (echow@cc.gatech.edu). Work supported by NSF under grant ACI-
1147843.

1

2 J. CHEN AND E. CHOW

Hermitian, the Schur decomposition is a diagonalization; hence, T is diagonal, and
the Parlett recurrence is not needed. Whereas the Schur decomposition and the eigen-
value decomposition have been demonstrated to have good performance on multicore
machines by using packages such as ScaLAPACK [1], the e�cient parallelization of
the decompositions on distributed memory machines is much more di�cult. This
situation limits parallel scalability.

Two iterative methods that are the most relevant to the present paper are New-
ton’s method and the Newton-Schulz method [11, 9]. Newton’s method starts with
X0 = A and iterates through

X
k+1 =

1

2
(X

k

+X�1
k

), k = 0, 1,

The iterates X
k

always converge to S (see [9, Theorem 5.6]). It is straightforward to
write X

k+1 � S = 1
2X

�1
k

(X
k

� S)2; hence,

lim
Xk!S

kX
k+1 � Sk2

kX
k

� Sk22
 1

2
kS�1k2 =

1

2
.

This means that Newton’s method converges quadratically.
On the other hand, the Newton-Schulz method starts with X0 = A and iterates

through

X
k+1 =

1

2
X

k

(3I �X2
k

), k = 0, 1, (1.1)

We have the following convergence result.
Theorem 1.1. The Newton-Schulz iteration is quadratically convergent when

kI �A2k2 < 1.
Proof. We write I�X2

k+1 = I� 1
4 [I�(I�X2

k

)][2I+(I�X2
k

)]2. Hence, denoting by
G

k

= I �X2
k

, we obtain G
k+1 = 3

4G
2
k

+ 1
4G

3
k

. If initially kG0k2 < 1, by induction one

sees that kG
k+1k2 < kG0k2

k

2 . Then, G
k

! 0. By factorizing G
k

as (S �X
k

)(S +X
k

)
and noting that S + X

k

is always nonsingular, we conclude that X
k

! S. We now
rewrite kG

k+1k2 < kG0k2
k

2 as

kX
k+1 � Sk2 < k(X

k+1 + S)�1k2 · kI �A2k2
k

2

to show the quadratic rate of convergence.
In the Hermitian case, the condition kI � A2k2 < 1 that ensures convergence is

equivalent to requiring that the spectral radius ⇢(A) is less than
p
2. Therefore, for

the method to be applicable, one must first compute the spectral radius and prescale
A. This computation can be done by using the Lanczos algorithm for large matrices
and thus is inexpensive. An advantage of the Newton-Schulz method, compared with
Newton’s method, is that the former is rich in matrix-matrix multiplications. Hence,
the Newton-Schulz iteration is easier to parallelize and is expected to scale much
better than when matrix inverses are required, as in Newton’s iteration. We note
that in electronic-structure calculations, the McWeeny purification method [17, 14] is
equivalent to the Newton-Schulz method.

The Newton-Schulz method is an instance of the Padé family of iterations X
k+1 =

f
`,m

(X
k

), where [10]

f
`,m

(x) =
xp

`

(1� x2)

q
m

(1� x2)

NEWTON-SCHULZ VARIANT FOR MATRIX SIGN COMPUTATION 3

and p
`

(x)/q
m

(x) is the [`/m] Padé approximant of the function (1 � x)�1/2. (Take
` = 1 and m = 0 for Newton-Schulz.) The Padé iteration for matrices is thus

X
k+1 = X

k

p
`

(1�X2
k

)q
m

(1�X2
k

)�1.

For convergence of the iteration and other interesting properties, see [9, Section 5.4].
Here, we consider the computational aspects. When m = 0, f

`,m

is a polynomial of
degree 2`+1. Evaluating this polynomial requires `+1 matrix-matrix multiplications.
Whether it is best to use ` = 1 (that is, Newton-Schulz) or a higher value depends
on the speed of convergence; an explicit rule is unclear. On the other hand, when
m > 1, matrix inversions are necessary. One can directly form q

m

(1 �X2
k

), followed
by an inversion (which is the only one), or use the continued-fraction representation
of the Padé approximant, which requires 2m� 1 inversions. On state-of-the-art par-
allel computer architectures, matrix inversions scale less satisfactorily than do matrix
multiplications.

The Padé approximation belongs to a broader category of rational approxima-
tions. Coincidently, the best uniform approximation of the sign function on a pair of
symmetric but disjoint intervals can be expressed as a rational function (see, e.g., [9,
Theorem 5.15]). Thus, when A is Hermitian, sign(A) is approximated by a rational
function of A, the calculation of which requires matrix inversion as well.

The Newton-Schulz method is appealing in a large-scale setting because it is
inversion free. We focus on improving the method in this paper, by noting that
a drawback of the method is that it requires a large number of iterations before
quadratic convergence is seen. In Section 2 we investigate this phenomenon in depth
by interpreting the iteration as a fixed-point mapping. The main discovery is that
the initial convergence for the eigenvalues closest to the origin is slow and that the
derivative of the mapping at the origin is of vital importance. Thus, in Section 3 we
derive a new mapping that maximizes the derivative at the origin so as to improve the
initial convergence. Detailed analysis follows (see Sections 4 and 5), with a particular
result suggesting that the number of iterations for the new mapping is reduced by
one half compared with the Newton-Schulz mapping. Practical implementation of
the new method is discussed in Section 6. At the end of the paper we demonstrate
large-scale calculations, including in parallel (see Section 7), and the application of
computing the density matrix in electronic-structure theory (see Section 8).

Terminology and notation. To avoid wordiness, we use the term “small-
est/largest magnitude eigenvalue” of a matrix A to indicate the smallest/largest ele-
ment of the set {|�(A)|}, where �(A) denotes the eigenvalues of A. These two elements
are denoted as �|min |(A) and �|max |(A), respectively. They are not necessarily the
eigenvalues of A; only the magnitude matters.

2. Standard Newton-Schulz. From here on, we refer to the Newton-Schulz
iteration (1.1) as “standard” Newton-Schulz. We use f to denote the Newton-Schulz
mapping

f(x) =
1

2
x(3� x2) (2.1)

so that the Newton-Schulz iteration reads X
k+1 = f(X

k

). Since A is Hermitian, the
convergence of Newton-Schulz is completely characterized by the properties of f on
the real line. Since we can always scale the matrix, we consider only the interval
x 2 [�1, 1], and we assume that ⇢(A) = 1. Then, Newton-Schulz is always convergent
according to Theorem 1.1. Figure 2.1 plots f .

4 J. CHEN AND E. CHOW

−1 0 1−1

0

1

Fig. 2.1. Mapping f .

Because f is odd, we further restrict our attention to the interval [0, 1]. The
mapping f on [0, 1] is monotonically increasing and admits x < f(x), except when
x = 0 or 1. Hence, one intuitive explanation of why the iteration X

k+1 = f(X
k

)
converges to the sign of A is that f pushes all the positive eigenvalues of A toward 1 in a
monotonic manner (and similarly pushes the negative eigenvalues toward �1). Among
all these eigenvalues, the one that converges the most slowly is the eigenvalue closest
to the origin. Let this eigenvalue be x0, and without loss of generality assume that
x0 > 0. Then, the initial iteration reduces the condition number from 1/x0 to 1/f(x0).
When A is ill-conditioned (i.e., x0 ⇡ 0), the rate of reduction is f(x0)/x0 ⇡ f 0(0).
Because of the significance of f 0(0), one naturally asks what is the optimal mapping
in the sense that the derivative at the origin is maximal. It turns out that the optimal
mapping is the one defined in (2.1), as the following result states.

Theorem 2.1. Let P be the set of cubic and odd polynomials that are monoton-
ically increasing on the interval [0, 1] and that maps this interval to itself. Then,

f = argmax
g2P

g0(0) with f 0(0) =
3

2
,

where f is defined in (2.1).
Proof. The polynomial must pass the origin because it is odd. It also must

pass the point (1, 1) because it is monotonically increasing. Then, all such cubic
polynomials must have the form g = ax+ (1� a)x3. The monotonic increase implies
that a 3

2 . Thus, g
0(0) = a is maximized when a = 3

2 .
In fact, in the proof, when a 1, the polynomial g always yields g(x) x, which

indicates that the fixed-point mapping X
k+1 = g(X

k

) never converges to sign(A).
Then, when one considers only 1 < a 3

2 , g
0 is decreasing with respect to a. Hence,

the rate of reduction in the condition number is at most 3
2 .

The reduction in the condition number informs only the behavior of the first
iteration. Also of interest are the first few iterations. Clearly, the sequence x

k+1 =
f(x

k

) generated through the mapping is monotonically increasing and approaching
1. When x0 is su�ciently small, however, the following result indicates that the first
few x

k

’s are also small. In particular, they depart from 0 at only a linear rate.
Theorem 2.2. Let f be the standard Newton-Schulz mapping (cf. (2.1)), and

define a sequence x
k+1 = f(x

k

) with an initial value x0 2 (0, 1). Then,

log

✓
x
k

x0

◆
< k log

✓
3

2

◆
< log

x
k

� f�1(x
k

)
1
3x0 �

⇥
f�1(x

k

)� 2
3xk

⇤ (2.2)

NEWTON-SCHULZ VARIANT FOR MATRIX SIGN COMPUTATION 5

whenever

1

3
x0 >

f�1(x

k

)� 2

3
x
k

�
. (2.3)

Proof. We first note that

f 0(x) =
3

2
(1� x2) > 0 and f 00(x) = �3x < 0,

when 0 < x < 1. Hence, for any k, x
k

< f 0(0)x
k�1. Because f 0(0) = 3

2 , by induction
we have that

x
k

<

✓
3

2

◆
k

x0.

This proves the first inequality of (2.2).
Next, we have

✓
3

2

◆
k

x0 � x
k

=

✓
3

2

◆
k�1 ✓3

2
x0 � x1

◆
+

✓
3

2

◆
k�2 ✓3

2
x1 � x2

◆

+ · · ·+
✓
3

2

◆0 ✓3

2
x
k�1 � x

k

◆
.

Because f 0(0) = 3
2 and f 0 is decreasing, we have that 3

2x � f(x) is positive and is
increasing. Then,

✓
3

2

◆
k

x0 � x
k

<

"✓
3

2

◆
k�1

+ · · ·+
✓
3

2

◆0
#✓

3

2
x
k�1 � x

k

◆

=

�
3
2

�
k � 1

3
2 � 1

✓
3

2
f�1(x

k

)� x
k

◆
.

Rearranging terms, we obtain

⇢✓
3

2
� 1

◆
x0 �

✓
3

2
f�1(x

k

)� x
k

◆�✓
3

2

◆
k

<
3

2

⇥
x
k

� f�1(x
k

)
⇤
,

which proves the second inequality of (2.2).
To understand the use of Theorem 2.2, we give an example. Consider that the

bound (2.2) is with respect to k. Table 2.1 gives the numeric values of (2.2) for
x0 = 10�3, where NA means the condition (2.3) is invalid. One sees that the bound
applies only when x

k

is not close to 1 (otherwise (2.3) is invalid); however, whenever
it is applicable, the bound for integer k is tight. Thus, we interpret the inequality on
the left as

log

✓
x
k

x0

◆
⇡ k log

✓
3

2

◆
(2.4)

for small x
k

. In other words, x
k

grows linearly for the first few k’s when the starting
value x0 is su�ciently small. Note that the factor log

�
3
2

�
is important; we will return

to this factor later.

6 J. CHEN AND E. CHOW

Table 2.1
Numerical values of (2.2) for x

0

= 10�3.

k 1 2 3
Bound (2.2) 0.99.. < k < 1.00.. 1.99.. < k < 2.00.. 2.99.. < k < 3.00..

x

k

1.5000e-03 2.2500e-03 3.3750e-03

k 4 5 6
Bound (2.2) 3.99.. < k < 4.00.. 4.99.. < k < 5.00.. 5.99.. < k < 6.00..

x

k

5.0625e-03 7.5936e-03 1.1390e-02

k 7 8 9
Bound (2.2) 6.99.. < k < 7.00.. 7.99.. < k < 8.01.. 8.99.. < k < 9.03..

x

k

1.7085e-02 2.5624e-02 3.8428e-02

k 10 11 12
Bound (2.2) 9.99.. < k < 10.13.. 10.99.. < k < 11.51.. 11.98.. < k < 14.51..

x

k

5.7614e-02 8.6325e-02 1.2917e-01

k 13 14 15
Bound (2.2) 12.97.. < k < NA 13.94.. < k < NA 14.87.. < k < NA

x

k

1.9267e-01 2.8543e-01 4.1652e-01

We summarize a few facts in the following theorem, whose validity is clear based
on the preceding discussions. Hence, the proof is omitted. The theorem connects the
scalar iteration with the matrix iteration.

Theorem 2.3. For a Hermitian matrix A and the standard Newton-Schulz map-
ping f defined in (2.1), consider the matrix iteration X

k+1 = f(X
k

), X0 = A, and the
scalar iteration x

k+1 = f(x
k

). If the spectral radius of A is 1 and x0 is the smallest
magnitude eigenvalue of A, then we have the following.

1. x
k

is the smallest magnitude eigenvalue of X
k

for all k.
2. The spectral radius of X

k

is 1 for all k; hence the condition number of X
k

is
1/x

k

.
3. kX

k

� Sk2 = |x
k

� 1| for all k.
4. x

k

! 1 monotonically and hence kX
k

� Sk2 ! 0 monotonically.

3. Newton-Schulz variant. In this section, we derive a variant of Newton-
Schulz so that the iteration progresses better intially. Theorem 2.1 states that the
standard Newton-Schulz mapping f is optimal among all cubic and odd polynomials
that map [0, 1] to [0, 1], if in addition the polynomial is required to be increasing. To
obtain a polynomial whose derivative at the origin is even larger, we need to sacrifice
the monotonicity.

Define

P 0 = {cubic and odd polynomial h : h([0, 1]) = [0, 1]}.

The polynomials in P 0 can be parameterized in several ways. Consider h̃(x) = ax+bx3,
where a > 0. We crop h̃ in the box [0, c]⇥ [0, d] and normalize it to obtain

h(x) =
1

d
h̃(cx) =

ac

d
x+

bc3

d
x3. (3.1)

When d is the maximum of h̃ on [0, c], such polynomials h constitute the set P 0.

NEWTON-SCHULZ VARIANT FOR MATRIX SIGN COMPUTATION 7

One can separate the values of b and c into three cases and calculate that

d =

8
>>>>><

>>>>>:

ac+ bc3, in case 1: b � 0

ac+ bc3, in case 2: b < 0 and c
r
� a

3b

2a

3

r
� a

3b
, in case 3: b < 0 and c >

r
� a

3b
.

(3.2)

See Figure 3.1 for visual examples of the three cases.

0 c0

d

(a) Case 1, a = 1, b = 0.1

0 c0

d

(b) Case 2, a = 1, b = �0.012

0 ec c0

ed

d

(c) Case 3, a = 1, b = �0.03

Fig. 3.1. Function h̃ in di↵erent cases of (3.2). c = 5.

In case 1, for all x 2 [0, 1], h(x) x, because the cubic polynomial h(x)� x has
roots �1, 0, 1 and on the interval (0, 1) it is clearly negative. In case 2,

h0(0) =
ac

d
=

ac

ac+ bc3
 3

2
,

because c
p
� a

3b . These two cases do not yield a better polynomial than the
standard Newton-Schulz mapping f . On the other hand, in case 3,

h0(0) =
ac

d
=

3

2
c

�r
� a

3b
,

which is larger than 3
2 . Hence, we further explore this case.

Define

e :=
ac+ bc3

d
=

ac+ bc3

2a
3

p
� a

3b

.

When x < e, we always have h(x) x, whereas when x � e, h maps [e, 1] to [e, 1]
(see the boxed area on the upper right corner of Figure 3.1(c)). Thus, when one tries
to increase c from

p
� a

3b in order to maximize h0(0), e monotonically decreases. As
before, we let x0 > 0 be the smallest magnitude eigenvalue of A, whereas the largest
one is 1. We want e to be not too large, because otherwise h(x0) falls between e and
1, which consequently loses the guarantee that the condition number of the matrix is
reduced. Then, by setting h(x0) e, we yield the constraint

bc3 + ac� h(x0)
2a

3

r
� a

3b
� 0. (3.3)

8 J. CHEN AND E. CHOW

One can easily show that the left-hand side of (3.3), as a function of c, has two
real roots c1 and c2 such that 0 < c1 <

p
� a

3b < c2 <
p
�a

b

. When c is chosen from
the interval [c1, c2], the inequality (3.3) is satisfied. Then, maximizing h0(0) leads to
c = c2, in which case (3.3) is satisfied with equality.

To yield an explicit form for c, we define c = ↵
p

� a

3b . Then, the equality of (3.3)
can be rewritten as

↵3 � 3↵+ 2h(x0) = 0. (3.4)

Meanwhile, h in (3.1) becomes

h(x) =
3

2
↵x� 1

2
↵3x3. (3.5)

In e↵ect, we have replaced three parameters a, b, and c by a single parameter ↵.
Substituting (3.5) into (3.4) gives

↵ =

s
3

1 + x0 + x2
0

. (3.6)

Thus, the function h as defined in (3.5) and (3.6) is the optimal polynomial we seek
from P 0.

Note an important property of h: it maps the interval [x0, 1] to the interval
[h(x0), 1], where h(x0) is always strictly larger than x0. Furthermore, h(x0) is the
smallest magnitude eigenvalue of h(A). In other words, h is used for updating not
only the matrix but also the smallest magnitude eigenvalue of the matrix. Note also
that h is not fixed; rather, it depends on the known spectral information of the current
matrix throughout the iteration. This feature implies that at the beginning x0 ⇡ 0
and we have ↵ ⇡

p
3; hence the derivative of h at the origin is approximately 3

2

p
3.

On the other hand, if x0 ⇡ 1, then ↵ ⇡ 1. In the limit, h recovers the standard
Newton-Schulz mapping f .

We summarize in Algorithm 1 the calculation of sign(A) by using (3.5) and (3.6)
in an iterative fashion.

Algorithm 1 Newton-Schulz variant for computing sign(A)

1: Compute the smallest (�|min |) and largest (�|max |) absolute eigenvalue of A.
2: Let X0 = A/�|max | and x0 = �|min |/�|max |.
3: for k = 0, 1, . . .maxiter do

4: Compute ↵
k

=

s
3

1 + x
k

+ x2
k

.

5: Update X
k+1 =

1

2
↵
k

X
k

(3I � ↵2
k

X2
k

).

6: Update x
k+1 =

1

2
↵
k

x
k

(3� ↵2
k

x2
k

).

7: If converged, exit loop.
8: end for
9: return X

k+1

NEWTON-SCHULZ VARIANT FOR MATRIX SIGN COMPUTATION 9

4. Analysis. We define here the mapping for the Newton-Schulz variant pro-
posed in the previous section:

h(x) =
3

2
↵x� 1

2
↵3x3, where ↵(x) =

s
3

1 + |x|+ x2
. (4.1)

Note that the mapping h defined here is not exactly the same as that in (3.5). The h
in (3.5) was originally treated as a polynomial with ↵ being a parameter. However,
one sees in the above derivation that ↵ in (3.6) actually depends on the spectral
information of the matrix iterate; hence, it is no longer fixed. Thus, in (4.1), we
make explicit the dependence of ↵ on x and use (4.1) as the formal definition of h in
the subsequent discussion. Figure 4.1 plots h on [�1, 1], together with the standard
Newton-Schulz mapping f for comparison.

−1 0 1−1

0

1

h: NS variant
f: standard NS

Fig. 4.1. Mapping h (Newton-Schulz variant) and f (standard Newton-Schulz).

We note that di↵erent from the case of f , we shall not treat h as a matrix
function and write X

k+1 = h(X
k

), because ↵ takes only a scalar value x as input.
By construction, the smallest magnitude eigenvalue maintains its “smallest” property
after one iteration. Hence, we define the matrix counterpart of h as

h(X) =
3

2
↵X � 1

2
↵3X3, where ↵(X) =

s
3

1 + �|min |(X) + �|min |(X)2
. (4.2)

Then, the iteration X
k+1 = h(X

k

) is consistent with that of Algorithm 1.
Clearly, the mapping h is monotonically increasing on [0, 1], and it maps this

interval to itself. Because ↵ � 1, we always have h(x) � f(x) for x 2 (0, 1). Hence,
for the same initial value x0 = x̃0 2 (0, 1), the sequence x

k+1 = h(x
k

) is always larger
than the sequence x̃

k+1 = f(x̃
k

), elementwise. Because x̃
k

! 1 and x
k

is bounded
by 1, the sequence x

k

monotonically increases to the limit 1, the same as does the
sequence x̃

k

. Furthermore, x
k

is always closer to the limit than is x̃
k

. We summarize
this result, together with other facts in the following theorem, whose proof is clear
based on the foregoing discussion. This theorem connects the matrix iteration with
the scalar iteration. One should compare this result with Theorem 2.3.

Theorem 4.1. For a Hermitian matrix A and the Newton-Schulz variant map-
pings h and h defined in (4.1) and (4.2), respectively, consider the matrix iteration
X

k+1 = h(X
k

), X0 = A, and the scalar iteration x
k+1 = h(x

k

). If the spectral ra-
dius of A is 1 and x0 is the smallest magnitude eigenvalue of A, then we have the
following.

10 J. CHEN AND E. CHOW

1. x
k

is the smallest magnitude eigenvalue of X
k

for all k.
2. kX

k

� Sk2 = |x
k

� 1| for all k.
3. x

k

! 1 monotonically and hence kX
k

� Sk2 ! 0 monotonically.
4. The spectral radius of X

k

converges to 1.
Furthermore, for the iteration x̃

k+1 = f(x̃
k

) where x̃0 = x0 and where f is the
standard Newton-Schulz mapping, we have x̃

k

< x
k

for all k > 0.
The significance of the first conclusion of Theorem 4.1 is that the convergence

behavior of X
k

is completely characterized by that of x
k

. Then, we need to focus
on only the mapping h. The following theorem states the limiting and the initial
behavior of the Newton-Schulz variant.

Theorem 4.2. Let h be the mapping of the Newton-Schulz variant (cf. (4.1)),
and define a sequence x

k+1 = h(x
k

) with an initial value x0 2 (0, 1). Then
1. x

k

converges to 1 quadratically; and
2. we have

log

✓
x
k

x0

◆
< k log

✓
3

2

p
3

◆
< log

x
k

� h�1(x
k

)⇣
1� 2

3
p
3

⌘
x0 �

h
h�1(x

k

)� 2
3
p
3
x
k

i (4.3)

whenever
✓
1� 2

3
p
3

◆
x0 >

h�1(x

k

)� 2

3
p
3
x
k

�
.

Proof. We already know that x
k

converges to 1 in Theorem 4.1. Because h(x)�1 =
� 1

2 (↵x+ 2)(↵x� 1)2, we have

lim
x!1

|h(x)� 1|
|x� 1|2 =

✓
lim
x!1

|↵x+ 2|
2

◆✓
lim
x!1

↵x� 1

x� 1

◆2

=
3

2

✓
lim
x!1

d↵

dx
+ ↵

◆2

=
3

8
, (4.4)

where the second equality follows from L’Hospital’s rule. This shows that the conver-
gence is quadratic.

To prove (4.3), we first note that

h0(x) =
3

2
(↵x)0(1� ↵2x2) and h00(x) =

3

2
(↵x)00(1� ↵2x2)� 3↵x[(↵x)0]2.

Because (↵x)0 > 0, (↵x)00 < 0 and 1�↵2x2 > 0 when 0 < x < 1, h0 is always positive
whereas h00 is negative. Hence, for any k, x

k

< h0(0)x
k�1. Clearly, h0(0) = 3

2↵|x=0.
Thus, by induction,

x
k

<

✓
3

2

p
3

◆
k

x0,

which proves the first inequality of (4.3).
Furthermore, we have

✓
3

2

p
3

◆
k

x0 � x
k

=

✓
3

2

p
3

◆
k�1 ✓3

2

p
3x0 � x1

◆

+

✓
3

2

p
3

◆
k�2 ✓3

2

p
3x1 � x2

◆
+ · · ·+

✓
3

2

p
3

◆0 ✓3

2

p
3x

k�1 � x
k

◆
.

NEWTON-SCHULZ VARIANT FOR MATRIX SIGN COMPUTATION 11

Because h0(0) = 3
2

p
3 and h0 is decreasing, we have that 3

2

p
3x� h(x) is positive and

is increasing. Then,

✓
3

2

p
3

◆
k

x0 � x
k

<

"✓
3

2

p
3

◆
k�1

+ · · ·+
✓
3

2

p
3

◆0
#✓

3

2

p
3x

k�1 � x
k

◆

=

�
3
2

p
3
�
k � 1

3
2

p
3� 1

✓
3

2

p
3h�1(x

k

)� x
k

◆
.

Rearranging terms, we obtain

⇢✓
3

2

p
3� 1

◆
x0 �

✓
3

2

p
3h�1(x

k

)� x
k

◆�✓
3

2

p
3

◆
k

<
3

2

p
3
⇥
x
k

� h�1(x
k

)
⇤
,

which proves the second inequality of (4.3).
Two relevant points are noted. First, even though both mappings f and h con-

verge to 1 quadratically as x ! 1, the convergence of h is “faster.” This claim is in
the sense that the limit (4.4) can be used to establish the quadratic convergence of h,
but a similar limit cannot be used for that of f , because for f we have

lim
x!1

|f(x)� 1|
|x� 1|2 =

3

2
,

which is larger than 1. The quadratic convergence of f can be shown by using a
technique similar to (and in fact simpler than) that of the proof of Theorem 1.1.

Second, similar to the interpretation of Theorem 2.2, we see that the bound (4.3)
is tight. For example, when x0 = 10�3, the numeric values of the bound are given in
Table 4.1. Hence, we write

log

✓
x
k

x0

◆
⇡ k log

✓
3

2

p
3

◆
. (4.5)

Compare (4.5) with (2.4), which we repeat here by adding a tilde to denote the
sequence generated through the f mapping (as we previously did):

log

✓
x̃
k

x0

◆
⇡ k log

✓
3

2

◆
.

Because the ratio between log
�
3
2

p
3
�
and log

�
3
2

�
is 2.35.., we can loosely conclude

that

x̃2k < x
k

< x̃3k.

This means that initially (when k is small), the iteration of Newton-Schulz variant
increases the iterate x

k

at least twice as fast as does the standard Newton-Schulz
iteration.

We empirically compare the convergence of x
k+1 = h(x

k

) and x̃
k+1 = f(x̃

k

) for
the same initial value x0 = x̃0. Figure 4.2 shows a few convergence curves for di↵erent
x0. All iterations are run to machine precision. In general, the number of iterations
for h is only half of that for f . The quadratic decay of errors in both iterations is
clearly seen when x

k+1 and x̃
k+1 are in the proximity of the limit. The advantage of

the h mapping lies in the faster decrease of error in the initial stage.

12 J. CHEN AND E. CHOW

Table 4.1
Numerical values of (4.3) for x

0

= 10�3.

k 1 2 3
Bound (4.3) 0.99.. < k < 1.00.. 1.99.. < k < 2.00.. 2.99.. < k < 3.03..

x

k

2.5968e-03 6.7378e-03 1.7445e-02

k 4 5 6
Bound (4.3) 3.98.. < k < 4.28.. 4.95.. < k < NA 5.88.. < k < NA

x

k

4.4914e-02 1.1383e-01 2.7539e-01

0 10 20 30 40 5010−20

10−15

10−10

10−5

100

1e−04

1e−04

1e−06

1e−06

1e−08

1e−08

iteration

di
st

an
ce

 to
 1

Fig. 4.2. Convergence of h mapping (blue, solid) and f mapping (red, dashed). Numbers for
each curve indicate the initial value x

0

. For each case, one iteration further, the distance to 1 is
either 0 or less than machine precision.

On closing this section, we remark that in the convergence guarantee of Algo-
rithm 1, x0 need not be the smallest magnitude eigenvalue of X0. The following
theorem states that Algorithm 1 always converges no matter what value x0 takes.
What is more amazing is that the quadratic rate of convergence is also maintained.
Hence, the price paid for using an arbitrary x0 is only some more iterations.

Theorem 4.3. In Algorithm 1, X
k

converges to S quadratically for any x0 2
(0, 1).

Proof. We repeat the iteration of Algorithm 1 in the following:

X
k+1 =

1

2
↵
k

X
k

(3I � ↵2
k

X2
k

). (4.6)

Because the sequence x
k

is computed through the fixed-point mapping x
k+1 = h(x

k

),
for any x0 2 (0, 1), x

k

converges to 1 quadratically. Hence, ↵
k

also converges to 1
quadratically. We use an auxiliary sequence

Y
k+1 =

1

2
Y
k

(3I � Y 2
k

), Y0 = X0 (4.7)

to gauge the convergence behavior of X
k

. Clearly, the sequence Y
k

results from the
standard Newton-Schulz iteration, and it converges to S quadratically.

Let V
k

= X
k

� Y
k

, W
k

= Y
k

� S, and ✏
k

= |↵
k

� 1|. We have

k↵
k

X
k

� Y
k

k2 k↵
k

X
k

� ↵
k

Y
k

k2 + k↵
k

Y
k

� Y
k

k2
= ↵

k

kV
k

k2 + ✏
k

kY
k

k2 (1 + ✏
k

)kV
k

k2 + ✏
k

(1 + kW
k

k2). (4.8)

NEWTON-SCHULZ VARIANT FOR MATRIX SIGN COMPUTATION 13

We further let Z
k

= ↵
k

X
k

� Y
k

. By noting that X
k

and Y
k

commute (because both
are polynomials of X0), we subtract (4.7) from (4.6) and obtain

kV
k+1k2 =

1

2
kZ

k

(3I � Z2
k

� 3↵
k

X
k

Y
k

)k2

 1

2
kZ

k

k2
⇣
3kI � Y 2

k

k2 + kZ
k

k22 + 3kZ
k

k2kYk

k2
⌘

 1

2
kZ

k

k2
⇣
kZ

k

k22 + 3(1 + kW
k

k2)kZk

k2 + 3(2kW
k

k2 + kW
k

k22)
⌘
.

With the help of (4.8) we further expand the inequality of kV
k+1k2 and obtain

kV
k+1k2

h
3(✏

k

+ kW
k

k2) +O(✏2
k

+ ✏
k

kW
k

k2 + kW
k

k22)
i
· kV

k

k2

+O(✏2
k

+ ✏
k

kW
k

k2 + kW
k

k22 + kV
k

k22).

Note that both ✏
k

and kW
k

k2 converge to 0 quadratically. Because kV0k2 = 0, by in-
duction we have that kV

k

k2 = O(✏
k

+kW
k

k2). This means that the di↵erence between
X

k

and Y
k

converges to 0 quadratically. Thus, X
k

converges to S quadratically.

5. Comparison with Newton’s Method. The mapping for Newton’s method
is

p(x) =
1

2

✓
x+

1

x

◆
, (5.1)

and hence Newton’s iteration reads X
k+1 = p(X

k

), X0 = A. One advantage of
Newton’s method is that it is globally convergent; thus, eigenvalue estimation is un-
necessary. Nevertheless, we note that several techniques have been proposed to scale
Newton’s iteration in order to improve convergence (see [9, Section 5.5]). In some of
these techniques, spectral information is computed and exploited.

In this section, we compare the convergence of Newton’s method with that of
Newton-Schulz and the variant. The comparison can be made convenient by as-
sumimg that A is Hermitian, in which case the convergence of Newton’s method is
completely characterized by either the largest or the smallest magnitude eigenvalue of
A undergoing the fixed-point mapping p. To be precise, we define the scalar function

I(x) =
(
x, |x| � 1

x�1, |x| < 1, x 6= 0.

The matrix function I(A) is well defined for a nonsingular A. Clearly, the Newton
sequence X1, X2 . . . generated from X0 = A is exactly the same as that generated
from X0 = I(A). The reason we consider I(A) is that all its eigenvalues have a
magnitude larger than or equal to 1. Note that p(x) is increasing when x � 1 and
p(x) � 1 in such a case. Then, the largest magnitude eigenvalue of X

k

monotonically
decreases to the limit 1. Therefore, if we let x0 = �|max |(I(A)) and x

k+1 = p(x
k

),
then

kX
k

� Sk2 = |x
k

� 1|

for all k. In other words, the convergence of the matrix sequence X
k

is the same as
that of the scalar sequence x

k

.

14 J. CHEN AND E. CHOW

In Figure 5.1, we repeat Figure 4.2 but overlay it with the convergence curve for
the pmapping for di↵erent initial values x0. Note that for Newton-Schulz (f mapping)
and the variant (h mapping), x0 is less than 1, whereas for Newton (p mapping), a
starting value x0 produces the same sequence as does x�1

0 . Hence, we assume that all
x0 are smaller than 1. Clearly, the smaller the x0, the more iterations are required for
convergence. One sees that Newton converges faster than Newton-Schulz but slower
than the Newton-Schulz variant.

One must be cautious when using the convergence of the scalar sequence to inter-
pret the convergence of the matrix sequence, even though the two are closely related.
For Newton-Schulz and the variant, the starting value x0 corresponds to the smallest
magnitude eigenvalue of the scaled matrix, that is, �|min |(A)/�|max |(A), whereas for
Newton, the starting value corresponds to the reciprocal of the largest magnitude
eigenvalue of I(A), that is, �|max |(I(A))�1. As a side note, we mention that one sim-
ple way to improve the convergence of Newton is to prescale the matrix A such that
the product of its largest magnitude eigenvalue and the smallest magnitude eigenvalue
is 1. This prescaling maximally reduces �|max |(I(A)).

−10 0 10 20 30 40 5010−20

10−10

100

1010

1e−04

1e−04

1e−04

1e−06

1e−06

1e−06

1e−08
1e−08

1e−08

iteration

di
st

an
ce

 to
 1

Fig. 5.1. Figure 4.2 overlaid with the convergence of p mapping (dashed-dotted).

6. Practical implementation. A few implementation issues for Algorithm 1
are addressed in this section.

6.1. Stopping criterion. We need a convergence test for line 7 of Algorithm 1.
We consider two methods. In the first method, we write X

k

� S = (X
k

S � I)S and
hence

kX
k

� Sk = k(X
k

S � I)Sk kX
k

S � IkkSk.

Note that the inequality is an equality in the 2-norm case because X
k

S� I and S can
be simultaneously and unitarily diagonalized and the eigenvalues of S are either 1 or
�1. When X

k

⇡ S, we obtain the relative error

kX
k

� Sk
kSk / kX2

k

� Ik.

Hence, it is straightforward to use kX2
k

�Ik ✏ as the convergence criterion, where ✏ is
the relative tolerance. Any submultiplicative norm can be used, but for computational

NEWTON-SCHULZ VARIANT FOR MATRIX SIGN COMPUTATION 15

convenience we can use the Frobenius norm. The computed squared factor X2
k

is
stored and used in the next iteration for updating X

k

.
In the second method, the absolute (and equivalently, the relative) 2-norm error

kX
k

� Sk2 = |x
k

� 1|, according to Theorem 4.1. Then, the convergence criterion
can be simply set as |x

k

� 1| ✏. Note that if the starting value x0 is arbitrary (as
mentioned at the end of Section 4), this criterion is invalid.

6.2. Shifting. A useful observation is that shifts of A do not change sign(A) as
long as these shifts do not cause eigenvalues of A to cross the origin. Hence, we can
perform a shift to precondition A (that is, to start with a larger x0) and to improve
convergence. Specifically, we first compute four eigenvalues of interest:

��min(A) ��max(A) < 0 < �+min(A) �+max(A),

which are the smallest negative, the largest negative, the smallest positive, and the
largest positive eigenvalue of A, respectively, and compute a shift

⌧ =
��max(A) + �+min(A)

2
.

Then, we input A0 = A � ⌧ and run Algorithm 1 to obtain S = sign(A0). The two
eigenvalues in Algorithm 1 now become

�0
|max | = max{|�+max(A)� ⌧ |, |��min(A)� ⌧ |}
�0
|min | = min{|��max(A)� ⌧ |, |�+min(A)� ⌧ |}.

Figure 4.2 gives an intuitive estimate of the amount of reduction in iterations because
of the reduction in condition number.

6.3. Eigenvalue estimation. The requirement of eigenvalue computation in
Algorithm 1 forms several levels of di�culty. Our discussion here is oriented toward
general eigenvalue techniques and software support. Whereas small-scale eigenvalue
problems have a standard solution through orthogonal transformations to the con-
densed form, large-scale eigenvalue problems are challenging, even if only a few ex-
treme and/or interior eigenvalues are sought. We make no e↵ort in designing new
eigenvalue techniques; rather, the issue we address here is how practical Algorithm 1
is in a large-scale setting with o↵-the-shelf software packages. For a comprehensive
treatment of the theory and state-of-the-art eigenvalue methods, we refer the readers
to Saad’s book [20]. Practitioners might develop specialized eigenvalue solvers for
their applications.

At the easiest level, no eigenvalue computation is carried out. The largest mag-
nitude eigenvalue can be estimated by using the Gershgorin circle theorem. The
theorem ensures that the spectral radius of the scaled matrix is no greater than 1. A
drawback of this method is that in some cases the bound provided by the theorem is
too pessimistic. On the other hand, the starting value x0 can be arbitrary, as noted
earlier; what is sacrificed is the optimal convergence. If a good estimate of the con-
dition number of A is known a priori, the extra number of iterations may not be too
large. Note that if x0 is not an accurate estimate, one must use the first stopping
criterion proposed in Section 6.1. Naturally, shifting is impossible.

At the next level, Gershgorin is replaced by a computation of the largest magni-
tude eigenvalue. This eigenvalue can be computed by using the Lanczos algorithm.
Accelerated by implicit shifts and restarts [12, 22], the Lanczos algorithm converges

16 J. CHEN AND E. CHOW

rapidly when the targeted eigenvalue is not clustered with others. The algorithm has
been implemented in ARPACK [13]. The dominant cost of the calculation is forming
matrix-vector products, for which extensive research has been devoted to designing
high-performance software as well as linear- or near linear-time algorithms for dif-
ferent types of matrices, such as sparse, Toeplitz, or kernel matrices. Because the
desired eigenvalue converges from inside the spectrum interval, if this eigenvalue can-
not be computed to high accuracy, a correction term must be added to ensure that
the spectral radius of the scaled matrix is no greater than 1.

The most di�cult level comprises the calculation of all four eigenvalues mentioned
in Section 6.2. In particular, shifting is useful and produces the correct result only
when the two innermost eigenvalues are computed accurately. Computing these eigen-
values, however, is a well-known challenge in applications. The Lanczos algorithm
discussed in the preceding paragraph can be reused, by applying A�1 as the operator
instead of A. Then, the dominant cost becomes solving linear systems with A. For
sparse matrices, a direct method is the most robust; software includes CHOLMOD [3]
and SuperLU [15]. For dense matrices arising from kernels, direct solves with high-
accuracy o↵-diagonal compression techniques are gaining popularity [25]. Iterative
solvers are in general not as robust as direct solvers but sometimes are highly e�-
cient with a good preconditioner. To avoid being too restricted by the standard form
of Lanczos, we also mention other popular methods for computing interior eigenval-
ues: shift-and-invert [5], Davidson’s method [2] and its improvements [18, 7], and
polynomial filtering [6], the details of which are not further discussed.

7. Numerical experiments. In this section we demonstrate numerical calcu-
lations with two sets of matrices: one from a toy problem and the other from the
application of density functional theory in quantum mechanical modeling. Several
aspects of the proposed algorithm are examined, including the accurate/inaccurate
estimates of eigenvalues, shifting, and di↵erent computing environments including a
single desktop with multithreaded Matlab and a computing cluster with MPI. The
goal of the experiments is to demonstrate the superiority of the proposed algorithm
compared with standard Newton-Schulz and the appealing scalability of an algorithm
that is multiplication-rich.

7.1. Toy problem. We consider a matrix built using the standard Laplacian L:

A =

L� c�|min |(L)

�2L+ 2c�|min |(L)

�
, (7.1)

where c < 1 is a tunable parameter. Here, L is the 2D Laplacian defined on an
m1 ⇥m2 grid, with known eigenvalues

4

sin2

✓
i⇡

2(m1 + 1)

◆
+ sin2

✓
j⇡

2(m2 + 1)

◆�
, i = 1, . . . ,m1, j = 1, . . . ,m2.

Clearly,

�|max |(A) = 2[�|max |(L)� c�|min |(L)] and �|min |(A) = (1� c)�|min |(L).

When c ! 1, A is increasingly ill-conditioned.
We let m1 = 20 and m2 = 30, and we test with several choices of c. Table 7.1

lists the number of iterations with di↵erent estimates of the eigenvalues �|max |(A) and
�|min |(A) in Algorithm 1; �|max |(A) is also used for scaling the matrix in Newton-
Schulz. For the estimated eigenvalues, we let �|max |(A) be twice the exact value.

NEWTON-SCHULZ VARIANT FOR MATRIX SIGN COMPUTATION 17

Usually, this eigenvalue is easy to estimate and setting it to be twice as large is
su�ciently conservative. On the other hand, for �|min |(A), we perturb the exact value
by a factor of 10 or 100 to simulate highly inaccurate estimates. In the table, the first
row always uses the exact eigenvalues. The column “NS” stands for Newton-Schulz
and “NSv” stands for the variant. All computations were run to kX2

k+1�Ik
F

 1e-14.

Table 7.1
Number of iterations for matrix A in (7.1). “NS” stands for Newton-Schulz and “NSv” stands

for the proposed variant (Algorithm 1). “Est. �|max |” and “Est. �|min |” are perturbed eigenvalues
of A, except in the first row, which uses the exact eigenvalues.

c = 0, cond = 488.802 c = 1� 10�2, cond = 48682.2
Est. �|max | Est. �|min | NS NSv Est. �|max | Est. �|min | NS NSv

1: 15.9348 3.26e-02 21 11 15.8703 3.26e-04 32 16
2: 15.9348 1.00e-02 21 13 15.8703 1.00e-04 32 17
3: 15.9348 1.00e-01 21 14 15.8703 1.00e-02 32 22
4: 15.9348 1.00e-03 21 15 15.8703 1.00e-06 32 22
5: 31.8696 3.26e-02 22 12 31.7405 3.26e-04 34 17
6: 31.8696 1.00e-02 22 13 31.7405 1.00e-04 34 18
7: 31.8696 1.00e-01 22 14 31.7405 1.00e-02 34 22
8: 31.8696 1.00e-03 22 16 31.7405 1.00e-06 34 23

c = 1� 10�4, cond = 4.86802e+06 c = 1� 10�6, cond = 4.86802e+08
Est. �|max | Est. �|min | NS NSv Est. �|max | Est. �|min | NS NSv

1: 15.8696 3.26e-06 43 21 15.8696 3.26e-08 55 26
2: 15.8696 1.00e-06 43 22 15.8696 1.00e-08 55 27
3: 15.8696 1.00e-04 43 27 15.8696 1.00e-06 55 31
4: 15.8696 1.00e-08 43 27 15.8696 1.00e-10 55 32
5: 31.7392 3.26e-06 45 22 31.7392 3.26e-08 56 26
6: 31.7392 1.00e-06 45 23 31.7392 1.00e-08 56 28
7: 31.7392 1.00e-04 45 27 31.7392 1.00e-06 56 32
8: 31.7392 1.00e-08 45 28 31.7392 1.00e-10 56 33

A few observations follow. As expected, the worse the conditioning, the more
the number of iterations. Across all test cases, when the eigenvalue estimates are
accurate, one sees that the proposed variant requires only half the iterations that
Newton-Schulz needs. For the variant, when both estimated eigenvalues are not far
from the accurate ones, the number of iterations increases by only one or two. When
the estimates are highly inaccurate, however, the number of iterations significantly
increases. Nevertheless, the variant still requires much fewer iterations than does
standard Newton-Schulz. The latter is relatively stable in the number of iterations
because �|min |(A) is irrelevant to the algorithm.

7.2. PARSEC matrices. We test our algorithm on the PARSEC collection of
matrices arising from density functional theory in quantum mechanics. The matrices
can be downloaded from the University of Florida Sparse Matrix Collection.1 This
collection contains matrices of size ranging from several hundreds to a few hundred
thousands. We use the Blues computing cluster2 at Argonne National Laboratory
to demonstrate the calculations for the larger matrices. The machine comprises 310
compute nodes, each of which has 16 Intel Sandy Bridge cores and 64 GB of memory.
The compute nodes are connected by QLogic QDR InfiniBand with a fat-tree topology.

1

http://www.cise.ufl.edu/research/sparse/matrices/

2

http://www.lcrc.anl.gov/about/blues

18 J. CHEN AND E. CHOW

We prepared two programs, one in Matlab and the other in C with MPI. The
Matlab program runs on one compute node with a maximum of 16 threads by default.
It uses the backslash command for solving linear systems and uses the eigs command
for computing eigenvalues. The C program runs on a large number of compute nodes.
It uses SuperLU for solving linear systems and uses PARPACK (parallel ARPACK)
for computing eigenvalues. The matrix-matrix multiplication is implemented naively
(without tuning or optimization) by using the Cannon’s algorithm, where the local
matrix blocks are multiplied by using the dgemm kernel and the matrix blocks are
communicated with MPI Sendrecv.

We run the standard Newton-Schulz iteration and the proposed variant on the
PARSEC matrices. The results are shown on the top part of Table 7.2. The tolerance
is set as nu/2, the best attainable relative error [9, Section 5.1], where u is the machine
precision. (For the two largest problems, iterations were carried out only at a later
stage of the experiment.) As expected, the proposed variant in general takes half the
number of iterations as required by standard Newton-Schulz. The computed inertias
are highly skewed: only a tiny portion of the eigenvalues is to the left of the origin.

Next, we center the matrices at 1/3 of the original spectrum (that is, the new
center is located at 1

3�+max + 2
3��min), and reperform the calculations. The cuto↵

1/3 is arbitrary; our purpose is to demonstrate calculations with an arbitrary change
of the origin. The results are shown in the middle part of Table 7.2. Interestingly, in
general the new inertias have a positive to negative ratio of approximately 2:1, which
is aligned with the magnitude ratio between the new �+max and ��min. The only
exception is the matrix Ga3As3H12, which we discuss later. Again, the number of
iterations for the Newton-Schulz variant is in general half that of standard Newton-
Schulz.

We further shift the centered matrices for preconditioning while preserving the
inertia, by using the formulas in Section 6.2. The results are shown in the bottom
part of Table 7.2. By inspecting the changes of the eigenvalues ��max and �+min,
one sees that for all matrices the condition number is reduced. Hence, the iteration
counts are reduced accordingly. Whereas for most of the cases the reduction is small,
one particular case that yields a significant improvement is the matrix benzene. The
results demonstrate that shifting always helps; the gain can sometimes be substantial.

One peculiar case is the matrix Ga3As3H12. After centering, the matrix becomes
very well conditioned, and only one eigenvalue lies on the right of the origin. Then,
after a further shifting, a small number of iterations are needed for both Newton-
Schulz and the variant to converge.

We show in Table 7.3 the timings of the calculations for the matrices after cen-
tering and optimal shifting. Results on the top part of the table are obtained by
running the Matlab program, those in the bottom part by running the C program.
As expected, computing the interior eigenvalues ��max and �+min is more costly than
computing the exterior eigenvalues ��min and �+max. Nevertheless, compared with
the iterations, the time for computing the eigenvalues is only a small portion, and
this portion is almost negligible for large matrices. Note, however, that although the
PARSEC matrices are sparse, we implement the iterations with dense matrix-matrix
multiplications.

8. Application: electronic-structure calculation. At every iteration of the
Hartree-Fock algorithm, also known as the self-consistent field (SCF) iteration, a
spectral projector called the density matrix is computed from the Fock matrix, which
is an approximation to the Hamiltonian [23]. The density matrix may be computed

NEWTON-SCHULZ VARIANT FOR MATRIX SIGN COMPUTATION 19

Table 7.2
Computation results of the matrices in the PARSEC collection. Inertia a/b means a positive

eigenvalues and b negative eigenvalues. The last two columns are the number of iterations.

Original matrix
Matrix n ��min

��max

�

+min

�

+max

Inertia NS NSv
Si2 769 -3.8e-1 -3.8e-1 2.4e-1 4.1e+1 768/1 18 10
SiH4 5,041 -1.0e+0 -6.3e-1 3.5e-2 3.7e+1 5,037/4 22 12

benzene 8,219 -7.3e-1 -1.7e-1 4.0e-2 5.8e+1 8,217/2 23 12
Si10H16 17,077 -1.2e+0 -1.5e-2 6.6e-4 3.7e+1 17,036/41 32 16

SiO 33,401 -1.7e+0 -2.4e-2 7.4e-2 8.4e+1 33,393/8 26 13
Ga3As3H12 61,349 -1.2e+0 -3.0e-2 1.0e-4 1.3e+3 not computed
Si34H36 97,569 -1.2e+0 -6.4e-3 9.0e-4 4.3e+1 not computed

Matrix centered to 1/3 of the spectrum
Matrix n ��min

��max

�

+min

�

+max

Inertia NS NSv
Si2 769 -1.4e+1 -1.1e-2 2.9e-2 2.8e+1 516/253 25 13
SiH4 5,041 -1.3e+1 -1.7e-3 2.0e-2 2.5e+1 3,467/1,574 29 15

benzene 8,219 -2.0e+1 -5.0e-3 7.2e-6 3.9e+1 5,459/2,760 43 21
Si10H16 17,077 -1.3e+1 -1.3e-3 6.9e-4 2.5e+1 11,575/5,502 31 16

SiO 33,401 -2.9e+1 -1.7e-3 3.1e-3 5.7e+1 22,620/10,781 31 16
Ga3As3H12 61,349 -4.3e+2 -3.3e+2 8.7e+2 8.7e+2 not computed
Si34H36 97,569 -1.5e+1 -2.0e-5 8.9e-4 2.9e+1 not computed

Matrix centered to 1/3 of the spectrum plus optimal shift
Matrix n ��min

��max

�

+min

�

+max

Inertia NS NSv
Si2 769 -1.4e+1 -2.0e-2 2.0e-2 2.8e+1 516/253 23 12
SiH4 5,041 -1.3e+1 -1.1e-2 1.1e-2 2.5e+1 3,467/1,574 24 13

benzene 8,219 -2.0e+1 -2.5e-3 2.5e-3 3.9e+1 5,459/2,760 29 15
Si10H16 17,077 -1.3e+1 -9.9e-4 9.9e-4 2.5e+1 11,575/5,502 30 15

SiO 33,401 -2.9e+1 -2.4e-3 2.4e-3 5.7e+1 22,620/10,781 30 15
Ga3As3H12 61,349 -7.0e+2 -6.0e+2 6.0e+2 6.0e+2 61,348/1 5 4
Si34H36 97,569 -1.5e+1 -4.6e-4 4.6e-4 2.9e+1 65,621/31,948 32 16

Table 7.3
Timing results of the computation of the matrices in Table 7.2. Only the timings for the centered

matrices after optimal shifts are shown. All times are in seconds. The top part was computed on
shared memory using a maximum of 16 threads; the bottom part was computed on distributed memory
using the specified number of MPI processes.

Matrix n Parallelism ��min

��max

�

+min

�

+max

NS NSv
Si2 769 16 threads 4e-1 5e-1 8e-1 5e-2 1e+0 6e-1
SiH4 5,041 16 threads 1e-1 3e+1 6e+1 9e-2 2e+2 1e+2

benzene 8,219 16 threads 2e-1 9e+1 6e+1 2e-1 9e+2 5e+2
Si10H16 17,077 16 threads 6e-1 9e+2 7e+2 6e-1 7e+3 4e+3

SiO 33,401 1,024 procs 1e+0 9e+0 7e+0 8e-1 4e+3 2e+3
Ga3As3H12 61,349 1,024 procs 4e+0 1e+2 2e+1 3e-1 3e+3 2e+3
Si34H36 97,569 2,304 procs 7e+0 4e+1 4e+1 6e+0 5e+4 2e+4

in many ways, the most obvious being through an eigenvalue decomposition of the
Fock matrix. In this section we demonstrate the use of our Newton-Schulz variant for
computing the density matrix.

Construction of the Fock matrix is the computationally intensive step in SCF
iterations, but it is highly parallel. Computation of the density matrix, however,

20 J. CHEN AND E. CHOW

Table 8.1
Hydrocarbon test problems. The dimension of the core-Hamiltonian matrix is the basis size,

and n

occ

is the number of occupied orbitals. The value �|min| is the smallest magnitude eigenvalue
of A after it has been scaled to have unit spectral radius.

Basis Size n

occ

�|min|
Graphene C

384

H
48

5,616 1,176 4.1e-05
Alkane C

418

H
838

10,042 1,673 2.4e-05

can be the bottleneck limiting parallel scalability: although the density matrix is not
extremely large, it must be e�ciently computed by using a large number of processors
(which were used earlier to construct the Fock matrix), much like the solution of
small coarse-grid problems in parallel multigrid. Algorithms of Newton-Schulz type
(called McWeeny purification [17] in the quantum chemistry literature) that are rich
in matrix-matrix multiplications are thus attractive in the high parallelism setting.

We generated the core-Hamiltonian matrix for two hydrocarbon molecules: a
graphene-like molecule, C384H48, and a linear alkane, C418H838. The core-Hamiltonian
describes the kinetic energy and nuclear attraction of electrons, but not electron-
electron interactions, and is often used as the initial guess for the Fock matrix in
SCF iterations. Since the Fock matrix itself depends on the density matrix, the core-
Hamiltonian initial guess corresponds to a zero initial guess for the density matrix.
Here, we compute the density matrix corresponding to these core-Hamiltonians. The
elements of the core-Hamiltonian matrices were formed by using the Dunning cc-
pVDZ basis set [4] using a standard quantum chemistry code [16]. Table 8.1 shows
the resulting matrix dimension (equal to the number of basis functions) for the two
test problems.

The density matrix is the spectral projector associated with the n
occ

lowest eigen-
values and their corresponding eigenvectors, where n

occ

is the number of occupied
orbitals, or half the number of electrons assuming closed-shell orbitals. To compute
the density matrix via the sign function, we first compute the sign of

A = µI �H,

whereH is the core-Hamiltonian in our case and µ, known as the Fermi level, separates
the occupied eigenvalues from the unoccupied eigenvalues. The Fermi level is often
known, especially for problems with a large energy band gap. For our tests, we chose
the Fermi level to lie exactly between the n

occ

and n
occ

+1-st eigenvalue of A, sorted
in increasing order. This is optimal for the Newton-Schulz method and the variant.
In practice, such an exact shift is not known. On the other hand, using the core-
Hamiltonian is a kind of worse case, since there is no gap of eigenvalues around µ, as
would be the case for more converged Fock matrices in later SCF iterations. We note
that once sign(A) is computed, the density matrix is given by (sign(A) + I)/2. The
density matrix can also be computed directly from A by using the McWeeny mapping
g(x) = 3x2 � 2x3, which can also be modified to accelerate convergence as we have in
this paper modified the Newton-Schulz mapping.

Figure 8.1 plots the residual norm kX2
k

� Ik
F

for Newton-Schulz and the vari-
ant for the two test problems. As we have seen before, the variant converges in
approximately half the number of iterations of the original method. For the original
method, convergence in the Frobenius norm is monotone, as every eigenvalue is im-
proved (pushed toward the correct direction) at each iteration. Although it is faster,
the situation is di↵erent for the variant method. Here, we observe a “dip” in the

NEWTON-SCHULZ VARIANT FOR MATRIX SIGN COMPUTATION 21

first five iterations: an initial decrease, faster than the decrease of standard Newton-
Schulz, followed by an increase. This observation does not contradict the monotone
convergence seen in Figure 4.2, which plots a residual in the 2-norm. In the variant
method, only the eigenvalue closest to zero is guaranteed to improve monotonically;
the nonmonotone convergence of other eigenvalues makes the Frobenius norm of the
residual converge nonmonotonically.

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

iteration

re
s
id

u
a

l
n

o
rm

NS

NS variant

(a) Graphene C
384

H
48

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

iteration

re
s
id

u
a

l
n

o
rm

NS

NS variant

(b) Alkane C
418

H
838

Fig. 8.1. Convergence of Newton-Schulz (NS) and the Newton-Schulz variant (NS variant) for
the graphene and alkane core-Hamiltonians.

9. Conclusion. The multiplication-rich property of the Newton-Schulz method
makes it preferable over other methods for computing the sign function of a Hermitian
matrix in the setting of high-performance computing. In this paper, we have presented
an improved variant that accelerates the initially slow convergence of Newton-Schulz.
The variant improves the 2-norm residuals during the iteration over those of Newton-
Schulz, and it generally requires only half the number of iterations to converge. The
main idea behind the improvement is the redesign of the Newton-Schulz mapping so
that eigenvalues with small magnitudes converge faster to their limits. Whereas the
Newton-Schulz mapping is a polynomial, the mapping for the variant is not. On the
other hand, both mappings maintain the property that the 2-norm di↵erence between
the iterate X

k

and the limit S is equal to the absolute di↵erence between a scalar
iterate x

k

and the limit 1, where x
k

is guaranteed to approach the limit monotonically
and quadratically.

The proposed variant requires estimation of the largest magnitude eigenvalue, as
does the standard Newton-Schulz method. On the other hand, most of the convergence
theory for the proposed variant is based on an accurate calculation of the smallest
magnitude eigenvalue as well. Nevertheless, we have proved a result stating that
the quadratic convergence is maintained even if the “smallest magnitude eigenvalue”
required by the algorithm is blindly set, and we have demonstrated numerical results
that validate the claim with the arbitrarily set value di↵ering from the true eigenvalue
by a factor of 100. The price paid is a larger number of iterations. Finally, the best
performance of the proposed variant is achieved by accurately calculating all the
following eigenvalues: the two extreme ones and the two straddling the origin, in
which case shifting can be applied as a form of preconditioning.

Acknowledgments. We thank Aftab Patel for assistance on this paper. We
also gratefully acknowledge use of the Blues cluster in the Laboratory Computing

22 J. CHEN AND E. CHOW

Resource Center at Argonne National Laboratory.

REFERENCES

[1] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley,
ScaLAPACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia,
PA, 1997.

[2] E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding
eigenvectors of large real-symmetric matrices, J. Comput. Phys., 17 (1975), pp. 87–94.

[3] T. A. Davis, Direct Methods for Sparse Linear Systems, SIAM, 2006.
[4] T. H. Dunning Jr, Gaussian basis sets for use in correlated molecular calculations. I. The

atoms boron through neon and hydrogen, The Journal of Chemical Physics, 90 (1989),
p. 1007.

[5] T. Ericsson and A. Ruhe, The spectral transformation Lánczos method for the numerical so-
lution of large sparse generalized symmetric eigenvalue problems, Math. Comp., 35 (1980),
pp. 1251–1268.

[6] H.-R. Fang and Y. Saad, A filtered Lanczos procedure for extreme and interior eigenvalue
problems, SIAM J. Sci. Comput., 34 (2012), pp. A2220–A2246.

[7] D. R. Fokkema, G. L. G. Sleijpen, and H. A. V. der, Jacobi–Davidson style QR and QZ
algorithms for the reduction of matrix pencils, SIAM J. Sci. Comput., 20 (1998), pp. 94–
125.

[8] A. Frommer, T. Lippert, B. Medeke, and K. Schilling, eds., Numerical Challenges in
Lattice Quantum Chromodynamics, vol. 15 of Lecture Notes in Computational Science
and Engineering, Springer, 2000.

[9] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, 2008.
[10] C. S. Kenney and A. J. Laub, Rational iterative methods for the matrix sign function, SIAM

J. Matrix Anal. Appl., 12 (1991), pp. 273–291.
[11] , The matrix sign function, IEEE Transactions on Automatic Control, 40 (1995),

pp. 1330–1348.
[12] R. B. Lehoucq and D. C. Sorensen, Deflation techniques for an implicitly re-started Arnoldi

iteration, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 789–821.
[13] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-

Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, 1998.
[14] X.-P. Li, R. W. Nunes, and D. Vanderbilt, Density-matrix electronic-structure method with

linear system-size scaling, Phys. Rev. B, 47 (1993), pp. 10891–10894.
[15] X. S. Li, An overview of SuperLU: Algorithms, implementation, and user interface, ACM

Trans. Math. Softw., 31 (2005), pp. 302–325.
[16] V. Lotrich, N. Flocke, M. Ponton, A. Yau, A. Perera, E. Deumens, and R. Bartlett,

Parallel implementation of electronic structure energy, gradient, and Hessian calculations,
The Journal of Chemical Physics, 128 (2008), p. 194104.

[17] R. McWeeny, Some recent advances in density matrix theory, Rev. Mod. Phys., 32 (1960),
pp. 335–369.

[18] R. B. Morgan and D. S. Scott, Generalizations of Davidson’s method for computing eigen-
values of sparse symmetric matrices, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 817–825.

[19] H. Neuberger, Exactly massless quarks on the lattice, Physics Letters B, 417 (1998), pp. 141–
144.

[20] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Revised Edition, SIAM, 2011.
[21] Y. Saad, J. Chelikowsky, and S. Shontz, Numerical methods for electronic structure calcu-

lations of materials, SIAM Review, 52 (2010), pp. 3–54.
[22] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM

J. Matrix Anal. Appl., 13 (1992), pp. 357–385.
[23] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Elec-

tronic Structure Theory, Dover, 1989.
[24] J. van den Eshof, A. Frommer, T. Lippert, K. Schilling, and H. A. van der Vorst,

Numerical methods for the QCD overlap operator: I. sign-function and error bounds,
Computer Physics Communications, 146 (2002), pp. 203–224.

[25] S. Wang, X. S. Li, J. Xia, Y. Situ, and M. V. D. Hoop, E�cient scalable algorithms for
solving linear systems with hierarchically semiseparable structures. submitted to SIAM J.
Sci. Comput., 2012.

NEWTON-SCHULZ VARIANT FOR MATRIX SIGN COMPUTATION 23

The submitted manuscript has been created by UChicago Argonne,
LLC, Operator of Argonne National Laboratory (“Argonne”). Ar-
gonne, a U.S. Department of Energy O�ce of Science laboratory,
is operated under Contract No. DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf, a
paid-up nonexclusive, irrevocable worldwide license in said arti-
cle to reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on behalf
of the Government.

